NGF activation of NF-kB through p758T™®
“may up-regulate the expression of such exrra-
matrix proteins in Schwann cells,
thereby influencing their migration during
‘nerve regeneration (7).
~ The NGF-p75N™—NF-«B signaling
pathway may also play a role in other
pathophysiological states. NGF is, so far,
unique among the neurotrophins in acting
w oo link berween inflammation and the
peripheral nervous system (20). NGF levels
are up-regulated in inflamed tissue (21),
anil it has been shown that NGF is released
by cells of the immune system (20), as are
cytokines, which act through NF-xB. NGF
i also known to be required for the hyper-
dlgesia accompanying tissue damage, and it
exerts its effects on nociceptive sensory
neurons (22). Thus, it can be envisaged
that NGF activates the p75NTR-NF-cB
pathway in a context relevant to the gen-
eration of hyperalgesia.
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Cerebellum Implicated in Sensory Acquisition
and Discrimination Rather Than Motor Control

Jia-Hong Gao, Lawrence M. Parsons, James M. Bower,
Jinhu Xiong, Jingi Li, Peter T. Fox*

Recent evidence that the cerebellum is involved in perception and cognition challenges
the prevailing view that its primary function is fine motor control. A new alternative
hypothesis is that the lateral cerebellum is not activated by the control of movement per
se, but is strongly engaged during the acquisition and discrimination of sensory infor-
mation. Magnetic resonance imaging of the lateral cerebellar output (dentate) nucleus
during passive and active sensory tasks confirmed this hypothesis. These findings sug-
gest that the lateral cerebellum may be active during motor, perceptual, and cognitive
performances specifically because of the requirement to process sensory data.

For a century, the cerebellum has been
regarded as a motor organ (1), Lesions to
the cerebellum cause incoordinared move-
ment (2), and the cerebellum is activated
during movement (3, 4). Recent studies of
brain-injured humans revealed that the cer-
ebellum is instrumental in nonmotor be-
haviors such as judging the timing of
events, solving perceptual and sparial rea-
soning problems, and generating words ac-
cording to a semantic rule (5). Very recent-
Ly, cerebellar activiry has been derecred dur-
ing these perceptual and cognitive behav-
iors (6) and during the mental rovation of
abstract objects (7). Such findings chal-
lenge classical motor theories of cerebellar
function. Although the cerebellum receives
input from virtually every sensory system
(8, 9) and is activared by ractile stimulation
alone (withoutr movement) (3), it has not
been considered a sensory organ because
cerehellar lesions do not cause gross sensory
deficits (2). However, ascertaining whether
neural tissue has a motor or sensory func-
tion is a subtle problem because motor be-
havior is guided by ongoing sensory acqui-
sition of object information, and motor ef-
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ficiency (the accuracy, coordination, and
smoothness of motor behavior) depends on
continuously updated sensory dara,

To dissociate sensory acquisition and
discrimination from motor performance per
se, we imaged blood oxygenation change, a
correlate of neural activity, in the lateral
(dentare) nucleus of humans as they per-
formed tasks involving passive and acrive
sensory discriminations. The dentare nucle-
us is the sole output for the large lateral
hemispheres of the primare cerebellum, and
its activation has usually been linked to
finger movements (10). We tested the hy-
pothesis (1) that dentate activation is
more closely associated with sensory dis-
criminations made through the fingers than
with finger-movement control per se.

Six healthy volunteers performed four
tasks (12). In the Cutaneous Stimulation
(CS) task (13), they passively experienced
sandpaper rubbed against the immobilized
pads of the second, third, and fourth fingers of
each hand. In the Cutancous Discrimination
(CD) task (13), they were asked o actively
compare (without responding) whether the
coarseness of the sandpaper on the two hands
matched. The coarseness of the sandpaper
changed randomly every 3 s. In the Grasp
Objects (GO) task (14), they used each hand
to repeatedly reach for, grasp, raise, and then
drop an object. In the Grasped Objects Dis-
crimination (GOD) task (14), they grasped
one object with one hand while using the
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movements per se would not cause the sig-
nificant activations.

By far the strongest activation (Figs. 1 1o
3) occurred during the GOD task. Again,
the right dentate was slightly more active
than the left. The extreme contrast (P <
0.003) berween the degree of dentate acti-
vation in the two grasping rtasks provides
evidence of strong cerebellar support for
sensory discrimination.

Together, these data rule out the conclu-
sion that the greater cerebellar activity in
the GOD task may reflect fine motor con-
trol. The GO rask, which requires similarly
fine motor control, produces no significant
dentate activation. Thus, fine movement
control per se does not engage the dentate,
in contrast to sensory stimulation per se. The
massive increase in activity in the GOD rask
relative to that in the GO task is entirely out
of proportion to the subtle differences that
may exist between the two tasks’ very similar
movements. The chief difference in move-
ments—that the GOD rask was performed at
a slightly slower pace—would wrongly pre-
dict a decrease in activation because motor
performance rate and activation strength are
positively correlated (22).

Thus, our results implicare the dentate
nucleus of the human cerebellum in sensory
acquisition and discrimination, Activation
occurred during sensory stimulation, when
there were no accompanying overt finger
movements or discrimination. Substantial
finger movements, when not associated with

tactile discrimination, did not induce signif-
T icant activation. Dentate acrivation was
greatly enhanced when a sensory discrimi-
nation was required, with or without overt
finger movements. However, the strongest
~ activation occurred when sensory discrimi-
nation was paired with finger movements.

Although these findings implicate the
lateral cerebellum in sensory discrimination
rather than in movement per se, they do
not identify its specific role. For example,
the greater increase in dentate activity for
the GOD task may simply result from the
multidimensional complexity of this senso-
ty processing task compared with the uni-
dimensional nature of the CD rask, Never-
theless, the interpretation closest to our
hypothesis (11) is that grearer cerebellar
activation during active manipulation re-
flects a direct role of the cerebellum in
modulating the motor control system to
reposition the tactile sensory surfaces of the
fingers. This coordination may be based on
the cerebellar analysis of the sensory infor-
mation actually being acquired, and it may

N ———

about object shape are being obtained in a
coordinated fashion from all finger surfaces.
~ These findings are not inconsistent with
the principal effects of cerebellar damage on
human movement. Cerebellar deficits in vol-

serve to ensure that the highest qualiry data.

untary movement, such as incoordination and
ataxia, may reflect disruption of the sensory
data (from the medial cerebellum-controlled
muscle spindle system) on which the moror
system depends, rather than disruption of cer-
ehellar computations of smooth motor perfor-
mance per se (11). Our results are also not
inconsistent with data from neurophysiologi-
cal studies of awake animals that have been
interpreted 1o implicate the cerebellum in
motor behavior, because the sensory and mo-

tor components of task performance have not
been well dissociated.
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